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Acoustic one-port source data are commonly used to predict the plane wave sound
generation in duct and pipe systems connected to #uid machines. The source data are
usually determined experimentally, which assumes that linear time-invariant system theory
can be used. Since some machines such as IC-engines and compressors generate very high
sound levels in the connecting ducts or pipes it is of interest to investigate whether the
assumption of linearity is justi"ed. Linearity tests for linear system identi"cation when both
input and output signals can be measured are common in the literature. In the case when
only the output signal can be measured linearity tests are not so readily found. This paper
presents two di!erent linearity coe$cients for determining whether an acoustic one-port
source under test is linear. Their sensitivity to random noise and their ability to detect
non-linearities are investigated by simulations and measurements on several types of
machines.
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1. INTRODUCTION

Acoustic one-port source models can be used to calculate the acoustic plane wave "eld
generated in duct systems by #uid machines, e.g., pumps, fans, IC-engines. They can also be
used for the design of mu%ers and silencers and to gain a better understanding for the
sound generating mechanisms in these machines. A number of experimental methods have
been developed for determining the source data for #uid machines. The source has to
behave as a linear time-invariant system for the one-port model to be valid. For machines
such as IC-engines and compressors, which generate high sound levels in the connected
pipes, the condition of linearity might be violated. There is therefore a need for experimental
methods to check whether the conditions of linearity and time invariance are ful"lled. In
the frequency domain, an acoustic one-port can be described completely by a source
strength and a source impedance (or a re#ection coe$cient) (see Figure 1) and the following
equation (1):

p
s
Z"pZ

s
#pZ, (1)

where p
s

is the source pressure, Z
s

is the normalized source impedance, p is the
acoustic pressure at the outlet of the source and Z is the normalized acoustic impedance of
the rest of the system seen from the source. The impedances are normalized using the
density and the speed of sound of the medium at the source duct cross section. A
review of di!erent measurement methods for determining the source data can be found in
references [1].
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Figure 1. One-port model for the plane wave region frequency domain source data for a #uid machine.
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The measurement methods used to determine the source data of acoustic one-ports can
be divided into methods &&with an external source'' or direct methods [2, 3] and &&without an
external source'' or indirect methods [4}8].

The methods &&with an external source'' are two step methods. First, the source impedance
is determined by exciting the source with the sound "eld from an external source and using,
for example, the two-microphone method [2, 3]. In the second step, the external source is
turned o! and the source strength is determined by making a pressure measurement when
a known acoustic load is applied to the source.

When using the methods &&without an external source'' the two unknowns p
s
and Z

s
are

determined by applying acoustic loads with known impedances (Z) and measuring the
acoustic pressure (p). Since there are two unknowns two measurements should be su$cient,
which leads to the two-load method [4]. If more than two loads are used an overdetermined
problem is obtained, which can be useful for improving the measurement results [3, 6, 9],
and for checking if the source behaves as a linear system [3]. The two-load method requires
that it is possible to make complex pressure measurements, which means that a reference
signal related to the sound generating mechanism of the source is needed. Such a reference
signal is not always possible to "nd, for example, when broadband as well as harmonic
components in the spectrum from the source are considered. For this reason and also for
purely practical considerations, for example, being able to use a single channel
measurement system instead of a two-channel system, methods have been developed where
the auto-spectra of the pressures are measured instead of the complex pressures. The "rst
such method was the three-load method [7]. By taking the squared magnitude of equation
(1), a real equation with three unknowns is obtained, i.e., G

ps
"Dp

s
D2 and the real and

imaginary parts of Z
s
, (Re(Z

s
), Im(Z

s
)). To determine the unknowns, it is therefore

necessary to make measurements using three di!erent loads. The resulting system of
equations is non-linear and can have more than one real solution. This method is quite
impractical to use and has also been reported to give large measurement errors [5]. In the
four-load method [8], a fourth measurement is used to eliminate the non-linear term
containing DZ

s
D2. This method has also been reported to give large measurement errors

[5, 10]. An analysis of the reasons for these problems and an alternative method of
evaluating the data used in the four-load method, which gives better results, was presented
in reference [11].

Linearity tests can be found in the literature for systems where both input and output
signals can be measured (e.g., see references [12, 13]). The acoustic one-port source is an
example of a system where only output data are available. Linearity tests for this case are



Figure 2. Real part of normalized source impedance as a function of engine orders. Engine sped 1200 r.p.m.,
three di!erent engine loads.

Figure 3. Sound pressure level (re. 2]10~5 Pa) in the exhaust system of a diesel engine as a function of engine
orders: ** measured; - - - - - calculated.
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the main topic of this article even though a short discussion of linearity tests for the case
when input and output signals are available is given in Section 2. One would of course
prefer to be able to calculate the frequency domain one-port source data from "rst
principles, but this is, in most cases, not possible. Non-linear time domain models are
available, (e.g., see reference [14]), but the problem is then to couple this description to the
linear frequency domain model normally used for the rest of the system. The resulting
so-called hybrid models have so far not been fully successful [15}17]. A number of
experimental methods for determining the linear frequency domain source data have been
developed [1]. It is therefore of interest to assess whether the experimental data obtained
are consistent with a linear source model. Figure 2 shows a typical example of the real part
of the measured normalized source impedance for the exhaust side of a Diesel engine
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[18, 19]. As can be seen, the real part of the source impedance is negative for many
frequencies, which is not physically correct for a linear source model. This could be an
indication of non-linear source behaviour. For a linear time-invariant passive system the
real part of the impedance must be positive since this shows the direction of energy. Energy
can only be lost into the system; it cannot be created since the system is passive. For
a non-linear system energy can be transferred from one frequency to another. This could, at
certain frequencies, suggest that the system was no longer passive by giving a negative real
part for the impedance.

The most relevant test is of course how well the source data can be used to predict the
noise from the machine. Figure 3 shows an example of the prediction of pressure in the
exhaust system for a Diesel engine, compared to measurements [19]. As can be seen
the prediction gives results which are satisfactory if the aim is engineering accuracy.

Many #uid machines such as compressors and IC-engines generate high sound pressure
levels or high #ow velocities, and it is not certain that linear models can be used to describe
them. It is therefore useful in the experimental situation to have methods to determine
whether a linear model can be used. Such a linearity test has been suggested for the methods
with an external source in reference [3]. In this paper, general linearity tests for all
measurement methods are presented.

2. LINEARITY TESTS FOR SYSTEMS WITH INPUT AND OUTPUT
SIGNALS AVAILABLE

A number of di!erent methods can be used to check whether the sound propagation in
the system is linear if the input and output signals are available. One example of such
a system is a duct where the pressure is measured at two di!erent duct cross sections. This is
the measurement situation when the source impedance is measured using the
two-microphone method which is a &&direct'' or &&external source''method [1]. This linearity
test will only indicate whether or not the system in-between the two measurement positions
is linear. It will therefore not indicate whether the source under test is linear. An ordinary
coherence function measurement can be used to detect non-linearitites in-between the
measurement points. The Hilbert transform can also be used for the some purpose (e.g., see
reference [12]). If certain assumptions are made regarding the character of the nonlinearities
the system can be separated into its linear and non-linear components [13]. If the pressure is
measured at three di!erent duct cross sections, two of the pressure measurements can be used
to determine the re#ection coe$cient using the two-microphone methods [18]. The re#ection
coe$cient can then be used to calculate the transfer function between the "rst and the third
measurement position, using linear acoustic theory. The agreement between this linear
calculation result and the directly measured transfer function indicates the validity of the
linear model. Sometimes the machine is instead used as the acoustic source to determine the
acoustic load impedance. Figure 4 shows an example of such a comparison and Figure
5 shows a coherence function measurement from measurements in a Diesel engine exhaust
system [19], indicating that a linear propagation model is valid.

3. GENERAL LINEARITY TESTS FOR SYSTEMS WITH ONLY OUTPUT
SIGNALS AVAILABLE

If it is assumed that there is a problem with m complex unknowns and that
n measurements are made, the over-determined equation system for determining the



Figure 4. Pressure transfer function between two measurement positions 80 cm apart in a Diesel engine exhaust
system as a function of engine orders. **, measured; - - - - -, calculated, * main engine harmonics.
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unknowns (x) can be written in the following way:

A ) x"b, (2)

where A is an (n]m) matrix, x is an (m]1) vector and b is an (n]1) vector. The idea is now
to formulate tests, i.e., linearity coe$cients, which can indicate whether the measured data

in A and b is consistent with the linear relationship of equation (2). The number of
measurements, n in equation (2), has to be larger than m for the linearity coe$cients to be
meaningful. If n equals m the linearity coe$cients will always indicate a linear relationship.
It can be of advantage to scale (2) in such a way that b is always the unity vector. This can
improve the result if some of the n equations in equation (2) are much larger in magnitude



Figure 5. Coherence function measurement between two measurement positions in a diesel engine exhaust
system as a function of engine orders, * main engine harmonics.
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than the others. A linearity coe$cient which is similar to the coherence function can then be
de"ned as

c2
c
"xI )x"bI )A )AI ) b, (3)

where superscript I denotes the pseudo-inverse of a matrix [20]. This linearity coe$cient
will have a value in the interval 0)c2

c
)1, where the upper limit represents a perfect linear

relationship.
One alternative approach to de"ne a linearity measure is to calculate all solutions for all

possible combinations consisting of m of the n equations. The number of solutions is given
by

A
n

mB"
n(n!1)(n!2)2(n!m!1)

m!
"

n!

m ! ) (n!m) !
. (4)

The mean (k) and standard deviation (p) of all the solutions can then be calculated for each
component of x. To get dimensionless quantities the standard deviation could be divided by
the mean. This will give a result which is equal to zero when there is a perfect linear
relationship and larger than zero otherwise. A linearity coe$cient which has a value
between zero and one and is equal to one when there is a perfect linear relationship can be
de"ned as

c2
s
"

k2

k2#p2
. (5)

A third possibility is to use the residual

e"(A ) x(!b)H (A ) x;!b), (6)
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where x; is the estimate of x and ( )H stands for transposition and complex conjugation. To
get a dimensionless quantity the following quantity can be de"ned:

e"
(A )x;!b)H(A )x;!b)

(A ) x; )H(A )x; )
. (7)

A linearity coe$cient which is equal to one when there is a perfect linear "t for the data and
which goes to zero when there is a bad "t can be de"ned in the following way:

c2
e
"

1

(1#e)
. (8)

It can in fact be shown that c2
e

gives the same result as c2
c

if x( calculated by taking
b multiplied by the pseudo-inverse of A gives the same result as x;"(AH )A)I (AH ) b), i.e., if
the problem is not numerically ill conditioned. A proof of the identity of c2

e
and c2

c
is given in

Appendix A.
The suitability of the di!erent linearity coe$cients for detecting non-linearities will, in the

following sections, be tested both by computer simulations and by measurements. All three
linearity coe$cients will also be a!ected by random noise disturbances. To separate the
e!ects of noise and non-linearities in a measurement the number of averages and, if possible,
the level of the excitation should be varied. The e!ect of random noise should decrease with
an increased number of averages and the e!ect of non-linearities should increase if the level
of excitation is increased.

4. LINEARITY TESTS FOR THE TWO-LOAD METHOD

For the two-load method, A,x and b from equation (2) can be expressed in the following
way:

A"C
Z

1
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1
Z

2
!P

2
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Z
n

!P
n
D , x"A

P
s

Z
s
B, b"C

Z
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1
Z

2
)P

2
F

Z
n
)P

n
D . (9)

Equation (3) and (5) then give the linearity coe$cients. The number of measurements,
n, in equation (9), has to be larger than two for the linearity coe$cient to be mean-
ingful. If n equals two the linearity coe$cient will always be equal to one. It is recommended
that "ve to six measurements be made, which will also improve the quality of the result
[21}23].

5. LINEARITY TEST FOR THE FOUR-LOAD METHOD AND THE DIRECT
LEAST-SQUARES METHOD

In the four-load method and the direct least-squares method attempts are made to "t the
data to the model given in equation (10)

DZD2
G

p

G
ps
!2 )Re(Z) )Re(Z

s
)!2 ) Im(Z) ) Im(Z

s
)!DZ

s
D2"DZD2, (10)
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where Re( ) stands for the real part, Im( ) stands for the imaginary part and G
p

is the
squared magnitude of P. The following system of equations in vector notation is obtained.

A"C
G

p
Z

!2 )Re(Z)!2 ) Im(Z)!ID, x"C
G

ps
Re(Z

s
)

Im(Z
s
)

DZ
s
D2 D , b"DZD2, (11)

where Gp

Z
is an (n]1) vector containing the elements Gp1

Z1
, Gp2

Z2
, 2 , Gpn

Zn
, Z is an (n]1) vector

containing the elements Z
1
, Z

2
, 2 , Z

n
, and I is an (n]1) vector with all elements equal to 1.

The linearity coe$cients are then given by equations (3) and (5).

6. LINEARITY TESTS FOR &&EXTERNAL SOURCE'' OR DIRECT METHOD

When using the two-microphone method the source impedance and the source strength
are determined in two separate measurements. For the source impedance determination the
following expressions are obtained:

A"qe, x"Z
s
, b"pe, (12)

where pe and qe are (n]1) vectors containing the acoustic pressures and volume velocities
(due to the external source) at the measurement cross-section. For determining the source
strength the following expressions are obtained:

A"I#
Z

s
Z

, x"p
s
, b"p. (13)

The linearity coe$cients are as above given by equations (3), (5) and (8). Equation (3) gives
the linearity coe$cient suggested in reference [3].

An impedance measurement can be regarded as a single input/single output problem,
where q ( f ) is the input, p( f ) is the output and Z( f ) is the linear system which is to be
determined. It is therefore also possible to use the non-linear system identi"cation technique
developed by Bendat [13] as mentioned in section 2.1. In this method, there is no need for
any over-determination. The measured signals are instead analyzed in a special way, where
for instance the input signal is squared and cubed before the auto-spectra and cross-spectra
are calculated.

7. NUMERICAL SIMULATIONS

To check how well the linearity coe$cients are able to detect di!erent degrees of
non-linearities some numerical simulations have been made. It is also important to
understand how the proposed linearity coe$cients react to noise since there will be some
remaining random noise in all measurements. To investigate the e!ect of noise on the
calculation the following model was used:

A"I, x"1, b"A#i ) b
r
, (14)

where b
r
, is a vector of the same size as A containing random numbers with the Gaussian

distribution with zero mean and a variance equal to one and i is a constant which is varied.
All three linearity coe$cients gave the same result when i was varied for a given noise
sample and degree of over-determination. Figure 6 shows an example of the result of this
simulation. The degree of over-determination can be varied by changing the length of vector



Figure 6. E!ect of added noise on the linearity coe$cients. For a system (b"A) where k is the relative
magnitude of the noise compared to the noise free data ** c2

c
; - - - - - c2

s
.

Figure 7. E!ect of the degree of overdetermination (n) on c2
c
for a system (b"A) with added noise where k is the

relative magnitude of the noise compared to the noise free data.
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A. The result of varying the degree of over-determination is shown in Figure 7, and it can be
seen that when it exceeds 12 no further improvement in the noise detection is obtained.

The results presented in Figure 6 show that the three linearity coe$cients are equally
sensitive to noise. This is important since it means that any large di!erences in the
calculated linearity coe$cients is not caused by measurement noise and must therefore be
caused by some non-random type of disturbance, i.e., non-linearity.

To investigate how the two linearity coe$cients react to a non-linear system some simple
tests have been made. The model used was, b"Ai, where i is a constant which has been
varied. A was a vector with six components with small (A"(1 1)1 1)2 1)3 1)4 1)5)5),
medium (A"(1 2 3 4 5 6)5) and large (A"(1 10 102 103 104 105)5) variation in the
data. The results are presented in Figure 8. It can be noted that c2

c
can give a result close to

unity even if the system is strongly non-linear and the variation in the data is large when the
non-normalized version of equation (2) was used. When the normalized version of equation



Figure 8. Linearity coe$cients for the system b"Ak :** c2
c

normalized; } - } - } - c2
c

non-normalized; - - - - -
c2
s
. (a) Small variation in the data, A"[1, 1)1, 1)2, 1)3, 1)4, 1)5]. (b) Medium variation in the data,

A"[1, 2, 3, 4, 5, 6]. (c) Large variation in the data, A"[1, 10, 100, 1000, 10 000, 100 000].
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(2) was used the result was much more similar to the result from c2
s
. Using the coherence like

linearity coe$cient c2
c

calculated from the normalized version of equation (2) or the
standard deviation based linearity test c2

s
therefore seems to be the best choice in

a measurement situation.
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A simulation of non-linear data for the two-load method has also been made. Six di!erent
loads were used and the following data were assumed:

P
s
"1, Z

s
"0)5#j0)5, Z"A

a#jb

b#jc

c#jc

d#jg

e#jk

f#jm
B ,

P"P
s

Z

Z#Z
s

#iP2
s

Z

(Z#Z
s
)2

DZ#Z
s
D

DP
s
D

,

where i determines the magnitude of the non-linear term compared to the linear term. The
result is shown in Figure 9. It can be seen that if the non-linear term is smaller than 10% of
the linear term the linearity coe$cients are very close to one, when it is approximately 50%
of the linear term the beginning of a decrease in the linearity coe$cients is seen and when it
is equal to the linear term in magnitude non-linearities from the measured coe$cients will
be certainly suspected.

8. EXPERIMENTAL RESULTS

8.1. IMPEDANCE MEASUREMENT

To test the linearity coe$cients in an experiment where the measurement errors should
be small and the system should be linear a standard impedance measurement was made.
The data were measured using the two-microphone method and the measurement objects
were a straight open ended duct and the same duct with absorbing material at the far end.
Figure 10 shows the measured impedances and Figure 11 shows the calculated linearity
coe$cients. As expected both linearity coe$cients are very close to unity.
Figure 9. E!ect of non-linearity on the linearity coe$cients for a simulated two-load measurement, k is the
relative magnitude of the non-linear term compared to the linear term:** c2

c
; - - - - - c2

s
for p

s
; } } } } } c2

s
for Z

s
.



Figure 10. Measured normalized impedances:** real part; } } } } } imaginary part. (a) Open ended duct. (b)
Duct "lled with absorbing material at the end.
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8.2. AXIAL FLOW FAN

The data presented in this section were originally used for determining the acoustic
two-port source data for a fan [11] and have been reanalyzed in order to calculate the
one-port data and the linearity coe$cients. In reference [11] the source data were
determined using an external source and the two-microphone method. To get
overdetermination "ve di!erent loads were used. An example of the results is shown in
Figure 12. All previous experience [3, 11] indicates that the axial #ow fan is a linear acoustic
source. The decrease in the linearity coe$cients at certain frequencies is therefore probably
caused by insu$cient suppression of #ow noise.

8.3. INTERNAL COMBUSTION ENGINE

Data from earlier studies on car engines [21}23] using the two-load method have been
reanalyzed to calculate the linearity coe$cients. Linearity coe$cients have also been
determined in more recent experiments for truck engines using the two-load-method [19]
and the direct least-squares method [18]. Data from both the exhaust and the intake side
have been analyzed.



Figure 11. Measured linearity coe$cients for impedance measurements; **c2
c
; } } } } } c2

s
. (a) Open ended

duct. (b) Duct "lled with absorbing material at the end.
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For the car engine exhaust side measurements were made for 20 acoustic loads and
a number of di!erent speeds and engine loads. Figure 13 shows an example of the measured
linearity coe$cients, which clearly indicate some non-linearity. This could be expected from
earlier analysis of these data [21}23].

For the car engine inlet side measurements were made for eight acoustic loads on "ve
engines and for a number of speeds and engine loads. An example of the results is presented
in Figure 14. This "gure illustrates how di$cult it is to interpret the results of the linearity
test when they do not indicate a perfect linear relationship. The normalized coherence
function-like linearity coe$cient and the standard deviation based linearity are, for most
engine harmonics, signi"cantly lower than unity. This shows that the result deviates from
a linear relationship, but to what degree and what consequences it will have when using the
source data for predictions is di$cult to say. An example of a comparison between
predictions of the pressure in the intake system made using the measured source data and
direct measurements is shown in Figure 15 [22]. It can be seen that an acceptable prediction
of the pressure can be obtained even though the linearity tests indicate a non-linear source
behaviour.

Figures 16 and 17 show examples of the linearity coe$cients from measurements on the
exhaust side of a truck Diesel engine [19]. Measurements were made using six acoustic



Figure 12. Measurements on an axial #ow fan. (a) Measured normalized source impedance; ** real part;
} } } } } imaginary part. (b) Measured linearity coe$cients; ** c2

c
; } } } } } c2

s
.
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loads and for a number of di!erent speeds and engine loads. Also in this case the standard
linearity coe$cients indicates a non-linear source behaviour. As could be seen from Figure
3 an acceptable prediction of the pressure in the exhaust system could be obtained despite
the indicated non-linear source characteristics.

Figure 18 shows an example of the linearity coe$cients from measurements on the air
inlet side of a truck Diesel engine [18]. Measurements were made using six acoustic loads
and for a number of di!erent speeds and engine loads. As for the result for the exhaust side,
the linearity coe$cients indicate non-linear source behaviour but a reasonably good
prediction of the pressure in the inlet system could still be obtained as can be seen from
Figure 19.

8.4. COMPRESSOR

Data from earlier studies [10] using the two-load method have been reanalyzed to
calculate the linearity coe$cients. Measurements were made for 24 acoustic loads and
a number of di!erent con"gurations. Some examples of the results are presented in Figure
20. These results show that the compressor behaves as a non-linear source.



Figure 13. Measured linearity coe$cients for source data measurements on the exhaust side of a car engine as
a function of engine harmonics:** c2

c
; normalized; } - } - } - } c2

c
, not normalized; } } } } } c2

s
for Z

s
; - - - - - c2

s
for

p
s
. (a) The catalytic converter included in the source. (b) Catalytic converter not included in the source.
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9. CONCLUSIONS

Two di!erent linearity coe$cients for determining if an acoustic one-port source under
test is linear has been suggested. It has been shown that both linearity coe$cients have the
same sensitivity to random noise. By simulations and measurements it has been shown that
non-linearities can be detected. Measurements for low-level sound sources such as
a loudspeaker and an axial fan indicate linear source characteristics using both linearity
coe$cients. When the linearity coe$cients are close to unity, as they are for the loudspeaker
and the axial fan, the conclusion can be drawn that a linear source model is valid. Tests on
high-level sound sources such as IC-engines and a compressor indicated some non-linear
behaviour. Numerical simulations have shown that the normalized version of equation (2)
should be used when calculating the coherence function-like linearity coe$cient. If the



Figure 14. Measured linearity coe$cients for source data measurements on the air intake side of a car engine as
a function of engine harmonics;** c2

c
, normalized; } - } - } - } c2

c
, not normalized; } } } } } c2

s
for Z

s
; - - - - - c2

s
for p

s
.

Figure 15. Two examples of sound pressure measurements in the air inlet system of a Otto engine as a function
of time: ** measured; - - - - - calculated.
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Figure 16. Linearity measured c2
c

for measurements on a 8-cylinder diesel engine, * main engine harmonics.

Figure 17. Linearity measure c2
s

for measurements on the exhaust side of a 8-cylinder diesel engine;**, source
strength; } } } } }, source impedance; * main engine harmonics.
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normalization is performed before the calculation both the standard deviation based
linearity coe$cient and the coherence function-like linearity coe$cient give a clear
indication of nonlinearity. One of the problems with these tests is that they cannot
distinguish between non-linearity and other types of measurement errors. Even if
measurement noise can be reduced by various signal-processing methods the interpretation
of the results when the test does not indicate a perfect linear source behaviour is a problem.
One way to get an indication of whether a deviation from linearity according to the tests
proposed in this paper is caused by measurement noise or non-linear source characteristics
is to use both proposed tests and compare the results. Numerical simulation has shown that
both tests give the same result for measurement noise but give slightly di!erent results for
non-linear source characteristics. The relationship between the value for the linearity
coe$cients and the degree of non-linearity and what the consequences will be when using
the measured source data for predictions still remains to be explained.



Figure 18. Linearity measure c2
c

for measurements on the inlet side of a 6-cylinder diesel engine; **,
normalized; } } } } }, non-normalized; * main engine harmonics.

Figure 19. Pressure in the air inlet system of a Diesel engine; ** measured; - - - - calculated.
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Figure 20. Measured linearity coe$cients for source data measurements of a compressor: c2
c
,

normalized; } - } - } - } c2
c
; not normalized; * * c2

s
for Z

s
; - - - - - c2

s
for p

s
.
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APPENDIX A

In this appendix, it is proved mathematically that the two measures c2
c

and c2
e

are
equivalent under some conditions. First, some theorems and de"nitions are given which
form a basis for the proof.

De5nition. Let A be a quadratic matrix of order m. Then if det(A)O0, A is said to be
non-singular.

In numerical calculations this is somewhat similar to a low condition number. There are
however cases when the matrix A still behaves as non-singular even for higher condition
numbers. Hence, a low condition number is not equivalent to the matrix being nonsingular.

De5nition. Let A be an (m]n) matrix. Then the pseudo-inverse AI is given by AI"VRIUH.
Here, A"URVH,U is an unitary (m]m) matrix, V is an unitary (n]n) matrix, and

R"C
D 0
0 0D,

where D is a r]r diagonal matrix containing the singular values of A.

It is well known that the Penrose conditions are satis"ed for the pseudo-inverse. That is
(AAI)H"(AAI), (AIA)H"(AIA), AIAAI"AI, AAIA"A. Furthermore, if r"n, then
AIA"E.
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Theorem. ¹he matrix A5A is non-singular if and only if the columns of A are linearly
independent.

According to this theorem, the least-squares solution is unique if the columns of A are
linearly independent. It is known that the least-squares solution is

Ax"b Q A5Ax"A5b Q x"(A5A)~1A5b

and the pseudo-inverse solution is

Ax"b Q x"AIb,

where AI is the pseudo-inverse of A. Hence, if the matrix A5A is non-singular then

x(A5A)~-A5b"AIb.

The two measures c2
c

and c2
e

have been de"ned and found to be numerically equivalent in
our applications. This can be proved as follows. According to equation (3)

c2
c
"b@AAIb

and equations (7) and (8) give

c2
e
"

(Ax; )H(Ax; )

(Ax; )H(Ax; )#(Ax;!b)H (Ax;!b)
,

where x; is the least-squares solution to the overdetermined equation system Ax"b. Since
A5A is non-singular x;"(A5A)~1A5b"AIb. The expression x;"AIb can be substituted into
the linearity measure c2

e
. Some algebra reveals that this measure can be rewritten as

c2
e
"

bHAAIb

bHb
.

Now, to study the equality c2
c
"c2

e
, that is

bIAAIb"
bHAAIb

bHb
.

Multiplying both sides with bHb and factorizing the equation gives

(bHbbI!bH)AAIb"0.

By using the Penrose condition bbI"(bbI )H and the above proven condition, bI"(b5b)~1b5,
it is found that

(bH!bH)AAIb"0

and the equation holds.
Thus the following theorem is proven.

Theorem. ¸et A be a non-singular (m]n) matrix, i.e., a matrix with linearly independent
columns and let b be a (m]1) matrix. ¹hen

(i) ¹he pseudo-inverse AI"(A5A)~1At and bI"(b5b)~1b5.
(ii) ¹he linearity measures c2

c
and c2

e
are equivalent.
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